miércoles

¿Qué es el Cos φ y cómo se compensa la reactiva?


¿QUÉ ES EL COSENO DE PHI?

El Cos φ es el coseno del ángulo φ que forman la potencia activa (P) y la aparente (S) en el triángulo de potencias tradicional. En un sistema eléctrico de corriente alterna con ondas senoidales perfectas, la descomposición de la potencia aparente en la suma de dos vectores, da como resultados un triángulo rectángulo, en el que las componentes se encuentran en los ejes de los números reales y los imaginarios:

Aplicando el Teorema de Pitágoras y las relaciones trigonométricas se obtiene que el Cosφ sólo depende de las Potencias Activa (P) y Reactiva (Q).

Cos(\varphi)={\frac{P}{S}}={\frac{P}{\sqrt{P^{2}+Q^{2}}}}


¿POR QUÉ COMPENSAR LA REACTIVA?

Como se explicó en el artículo anterior, una variación de la potencia reactiva hace que los equipos generadores y/o transformadores que abastecen a la instalación trabajen a un régimen mayor del necesario. Además, que la administración está penalizando, cada vez más duramente los valores del Cos φ bajos. Con lo que compensar la energía reactiva supone un ahorro directo en la factura eléctrica.

¿QUIÉN ES EL CULPABLE DE LA REACTIVA?

La energía reactiva la utilizan los equipos con bobinados para mantener los campos magnéticos que necesitan para realizar su trabajo. Así motores y transformadores son los grandes consumidores de reactiva.

¿CÓMO SE COMPENSA LA REACTIVA?

La energía reactiva se compensa instalando condensadores en paralelo a las cargas “problemáticas”. Así en grandes motores y transformadores se instalarán condensadores en paralelo conectados solidariamente, de modo que cuando éstos entren en funcionamiento lo hagan con su condensador apoyándolos.
.
En ocasiones no es una carga concreta la causante del problema, si no que es la suma de todas. Se descarta el compensar carga a carga por lo elevado de la instalación. Así que se montará una batería regulable de condensadores. Que mida en tiempo real la reactiva demandada por la instalación y, conecte automáticamente los condensadores (“botes” en el argot) que necesite para compensarla.


A continuación se explicará cómo se calcula una batería de condensadores para una instalación en marcha o en proyecto, de dos formas distintas: Teórica y Empírica

  • CÁLCULO INSTALACIÓN PROYECTADA
Si la instalación no ha funcionado nunca, sólo podremos dimensionar la batería realizando una estimación, de modo teórico. Contabilizar la potencia instalada de cada receptor, aplicarle un coeficiente de simultaneidad [En la  ITC-BT 10 de la Guía Técnica del Reglamento de Baja Tensión encontrará estos coeficientes y, algunos consejos] y estimar un Cos φ.

Como norma general se aplicará un Cos φ de 0,8 (Tan φ = 0,75) a todas las cargas con grandes motores y transformadores, como la maquinaria. Y un Cos φ de 0,9 (Tan φ = 0,48) para alumbrado y otro tipo de receptores. Así, se sumará la componente reactiva de todas las cargas:

Q_t = \sum{P . F_s . Tan(\varphi)}

Se elegirá la batería de condensadores de una potencia reactiva inmediatamente superior a la calculada, teniendo en cuenta las escalas de fabricación.

  • CÁLCULO INSTALACIÓN EN MARCHA
Una instalación en marcha permite hacer el cálculo de dos maneras. Una teórica y otra práctica o empírica. Lo aconsejable es hacerlo de las dos y contrastar. Además que cada una tiene unas ventajas, que las acercan más al valor más idóneo.

CÁLCULO PRÁCTICO
Conecte todos los equipos de la instalación. Todos. Póngalos a funcionar, a consumir electricidad. Si la instalación cuenta con máquinas póngalas a trabajar, haga que demanden unos niveles altos de energía. Por ejemplo si tiene sierras eléctricas haga que corten, no se conforme con que gire el disco. Previo a esto deberá haber conectado en la cabecera de la instalación un analizador de redes u otro equipo registrador que mida la potencia activa y reactiva de la instalación. Cuando recoja el equipo revise cuál ha sido la máxima potencia reactiva demandada. Piense en la posibilidad de que haya futuras ampliaciones que necesiten compensar una reactiva mayor que la medida y, elija una batería suficiente para compensarla.

CÁLCULO TEÓRICO
Necesitará las facturas eléctricas del último año. Es necesario un año entero ya que no se usan, las instalaciones, del mismo modo en invierno y verano. La calefacción y/o aire acondicionado, trabajos estacionales (piense en una bodega), cambios de horarios (en verano hay muchas empresas que reducen su jornada), etc … hacen que las necesidades energéticas no sean constantes a lo largo del año.

Observe que en las facturas hay tres parámetros que ha registrado el contador en cada uno de los periodos: Potencia Activa (kW), Energía Activa (kWh) y Energía Reactiva (kVArh). Usará los tres para el cálculo de la batería.

Como en todos los aspectos de la vida, el tiempo (h: en horas) afecta a todo por igual, y, a las Potencias también, por lo que el triángulo de potencias mantiene sus proporciones cuando se hace con energías. Así, φ mantiene su valor aunque los catetos del triángulo sean las energías activa y reactiva en vez de las potencias.

Para calcular la Potencia Reactiva máxima en la instalación usaremos las relaciones trigonométricas entre dos triángulos rectángulos proporcionales:

{\frac{Q}{P }} = {\frac{Energ Reactiva}{Energ Activa} } \Longleftrightarrow Q = {\frac{E.Reac * P}{E.Act}} = kVAr = {\frac{kVArh * kW}{kWh}}

Así, se calculará la Máxima Potencia Reactiva en kVAr en cada periodo de cada factura y, se tomará como la potencia a compensar la máxima de todas. Igual que en los casos anteriores, se tendrán en cuenta las potencias estándar de los fabricantes de baterías y, la posibilidad de futuras ampliaciones en la instalación.

Fuente: Por redacción

No hay comentarios:

Publicar un comentario